SPI	الجامعة السورية الخاصة SYRIAN PRIVATE UNIVERSITY	كليية هندسة الحاسوب والمعلوماتية والاتصالات Faculty of Computer & Informatics and Communications Eng.					
	الفترة الإمتحانية: الأولى	: الأحد 2019/01/06	اليوم و التاريخ	رات المنطقية	اسم المقرر: الدار		
	مدة الامتحان: ساعة ونصف	الدرجة: خمسون	عدد الاسئلة: 7	5	عدد الصفحات:		
	الفصل: الأول	العام الدراسي: 2018- 2019		د.م. حسان أحمد	اسم المدرس:		

Part _I. Choose the correct answer: [25 marks]

1.	The number of values that can be assigned to a bit are					
	A. two B. ten C. eight D. one					
2.	AND, OR, and NOT gates can be used to form					
	A. storage devices B. all answers (A,C,D) C. comparators D. data selectors	•				
3.	A shift register is an example of a					
	A. comparator B. counter C. storage device D. data selector	•				
4.	A device that is used to switch one of several input lines to a single output line is called a					
	A. comparator B. decoder C. demultiplexer D. multiplexer					
5.	The binary number 11011101 is equal to the decimal number					
	A. 221 B. 121 C. 321 D. 212	-				
6.	The decimal number 250 is equivalent to the binary number					
	A. 11110110 B. 11111010 C. 11111000 D. 11111011	•				
7.	The 2's complement of 11001100 is					
	A. 00110011 B. 00110101 C. 00110100 D. 00110110	-				
8.	The decimal number –234 is expressed in the 2's complement form as					
	A. 01011110 B. 10100010 C. 01011101 D. 11011110					
9.	An inverter performs an operation known as					
	A. both answers (B) and (C) B. complementation C. inversion D. all answers (A,B,C) are valid					
10.	A Boolean expression that is in standard SOP form is					
	A. the minimum logic B. has every variable C. contains only D. all answers					
	expression in the domain in one product term (A,B,C) are valid every term					
11.	Adjacent cells on a Karnaugh map differ from each other by					
	A. two variables B. all variables C. one variable D. answer depends on the size of the map					
12.	A variable is a symbol in Boolean algebra used to represent	-				
	A. data B. a condition C. an action D. answers A, B, and C					
13.	The Boolean expression \overline{ABCD} is					
	A. a product term B. an inverse term C. a literal term D. all answers (A,B,C) are valid					
14.	Which one of the following is not a valid rule of Boolean algebra?					
	A. $A + 1 = 1$ B. $A = \overline{A}$ C. $AA = A$ D. $A + 0 = A$					
15.	According to DeMorgan's theorems, the complement of a product of variables is equal to					
	A. the complement of B. the product of the C. the sum of the D. answers A, B, and					
	the sum complements complements C					

16.	Decoder is a digital of	circuit that converts	coded info	rmation in	to a		
200		B. coded form	C. specifi			swers (A,B,C) are not	t
17.	Encoder a digital circu	it that converts info	rmation to a	coded form			
	A. noncoded form	B. coded form	C. specifi	ed form	D. all an valid	swers (A,B,C) are not	t
18.	B. Full-adder a digital circuit that adds two bits and an input carry to produce a						
	A. sum output only	B. output carry on	ly C. sun	n and an out	put carry	D. all answers (A,B,C) are valid)
19.	Multiplexer is a circu	it that switches dig	gital data fro	om several	input lines	onto a	
	A. single output line	B. multi single line	output C	2. several output li	single ne	D. all answers (A,B,C) are valid	5
20.	An active HIGH inpu	it S-R latch is form	ed by the c	ross-coupli	ing of		
	A. two NAND gates	B. two NOR g	gates C	L. two OR	gates	D. two AND gates	
21.	A flip-flop changes i						
	A. falling edge of th clock pulse	e B. rising edge clock pulse		and (B)	swers (A)	D. all answers (A,B,C) are not valid	
22.	For an edge-triggered	l D flip-flop,	i				
	A. a change in the	state B. the stat	e that the	C. the ou	utput follov	vs D. all answers	3
	of the flip-flop can flip-flop goes to the input at each (A,B,C)			•			
	occur only at a o	-	s on the D	clock	pulse	valid	
<u></u>	pulse edge	input					
23.	J-K flip-flop is SET -1				_ 1	$\mathbf{D} \mathbf{I} = 1 \mathbf{V} = 0$	
24.	A. $J = 1, K = 1$ A register's function	B. $J = 0, K = 0$	<i>J</i>	2. $J = 0, K$	- 1	D. $J = 1, K = 0$	
44.	A legister s function A. data storage	B. data moveme	nt C	. neither (a) not (\mathbf{b})	D. both (a) and (b)	
	Ų				······		
25.	To enter a byte of da	ta serially into an 8	-hit shift re	gister ther	e must be		

Part II. Solve each of the following problems

1.	For the Exclusive-OR gate, write the Boolean expression and construct its truth table.
	[4 marks]
2.	Apply DeMorgan's theorems to each expression: [4 marks]
	a. $\overline{A(B+C)}$
	b. $\overline{(A+\overline{B})(\overline{C}+D)}$
3.	Use a Karnaugh map to minimize the following standard SOP expression: [4 marks]
	$\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$

